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Recent years have witnessed the increasing research interest in developing
machine learning, especially deep learning which provides approaches for
enhancing the performance of microearthquake detection. While considerable
research efforts have been made in this direction, most of the state-of-the-art
solutions are based on Convolutional Neural Network (CNN) structure, duetoits
remarkable capability of modeling local and static features. Indeed, the globally
dynamic characteristics contained within time series data (i.e., seismic waves),
which cannot be fully captured by CNN-based models, have been largely ignored
in previous studies. In this paper, we propose a novel deep learning approach,
TransQuake, for seismic P-wave detection. The approach is based on the most
advanced sequential model, namely Transformer. To be specific, TransQuake can
exploit the STA/LTA algorithm for adapting the three-component structure of
seismic waves as input, and take advantage of the multi-head attention
mechanism for conducting explainable model learning. Extensive evaluations of
the aftershocks following the 2008 Wenchuan My7.9 earthquake clearly
demonstrates that TransQuake is able to achieve the best detection performance
which excels the results obtained using other baselines. Meanwhile, experimental
results also validate the interpretability of the results obtained by TransQuake,
such asthe attention distribution of seismic waves in different positions, and the
analysis of the optimal relationship between coda wave and P-wave for noise
identification.
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INTRODUCTION

With the rapid development of seismic monitoringhteology, more and more
attention has been paid to the efficient detectiand differentiation of
microearthquakes from massive noise data, sudheastensive aftershock sequences
following a destructive earthquake. Indeed, a ¥ar@d methods, such as template
matching (Frank W. B. et al., 2014; Gibbons S.tJlg 2007), similarity searching
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Fig. 1 The geographical location of the study region.

(Yoon C. E. et al., 2015), and higher-order stagss{Saragiotis C. D. et al., 2000),
have been developed in previous studies for addgessis challenge. Nevertheless,
the most widely used technologies for seismic plagsection are developed based on
the STA/LTA algorithm and/or its variants, whicrerdtify earthquake events when the
ratio between the Short-Term Average (STA) and Ldegn Average (LTA) of
energy function for seismic waves exceeds the pfied threshold (Allen R., 1982;
Guo Tielong et al.,, 2019; Withers M. et al., 1998jowever, the identification
performance of all these traditional approachessigally limited, either due to the
trade-off effect between false and missing alarmglwe to the that between the
computational cost and time sensitivity (Liu Hanakt 2014; Reichstein M. et al.,
2019).

Recently, an increasing number of researchers liagasedon developing
machine learning, especially deep learning, whjmtovides approaches for
enhancing the performance of microearthquake detectWhile considerable
research efforts have been made in this domaint ofdbe state-of-the-art solutions
are based on Convolutional Neural Network (CNNycure, due to its remarkable
capability of modeling local and static feature®\Bt-Leduc B. et al., 2020; Zhang
Xiong. et al., 2020). For example, Perol T. et &018) propose an advanced
CNN-based approach, CovNetquake, for earthqualecti@h and location. Based on
CovNetquake, (Zhu Lijun. et al., 2019) propose & approach CPIC for identifying
and picking the seismic phase arrivals. HowevagesiCNN is originally designed for
pixel-based image processing rather than sequedai@ modeling, the global and
dynamic characteristics of seismic waves cannofublg captured by CNN-based
models, which has been largely ignored in preveiudies.

To address the above challenges, in this papepro@ose a novel deep learning
approach, TransQuake, for seismic P-wave detediased on the most advanced
sequential model in natural language processingP{NLnamely Transformer
(Vaswani A. et al., 2017). To be specific, Transkuaan exploit the STA/LTA
algorithm for adapting the three-component strigctfr seismic waves as input, and
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Fig. 2 Some examples of labeled waveforms in the dataset.
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take advantage of the multi-head attention mecharfr providing explainable

model learning. Extensive evaluations of the alftecks following the 2008

WenchuanMy,7.9 earthquake clearly demonstrates that TransQoakeachieve the

best detection performance which excels the reslitained using other baselines.
Meanwhile, experimental results also validate theerpretability of the results

obtained by TransQuake, such as the attentionilitittn of seismic waves in

different positions, and the analysis of the optimedationship between coda wave
and P wave for noise identification.

1 DATAAND METHOD
1.1 Data

The dataset used in this paper is the records Of H® signals from the
aftershocks following the 2008 Wenchudi, 7.9 earthquake, which were recorded by
14 permanent earthquake stations (Fang Lihua, 260 July f'to 3% The
distribution of stations and the main event arensh Fig. 1. Each record of these
stations contains 3 dimensions (3-D): vertical comgnt, north-south component,
and east-west component. Followed by the setting&Zhang Qi et al., 2019), we
filter the waves using the Bessel filter with bamdhv 2-10 Hz, and generate the
negative samples by thEilterPicker (Lomax A. et al., 2012). Considering the
different epicentral distances, we are unable toaséxed time window that only
contains a full P-wave, thus we set the time-windasv50 s to comprehensively



analyze all the included waveforms. After data psepssing, we have obtained 109
719 noise waveforms (negative samples), 9 891 shitek waveforms (positive
samples), and the shape of each waveform is stadttoy 1 x 3 x 5000. Fig. 2
shows some examples of two types of waveforms. No&t, instead of directly
generating the noise waveforms by background nosse we

Tablel Some important mathematical notations.

Symbol Description
d The dimension of hidden units.
D The dataset of waveforms.
I The first dimension of a wave after reshaping, &senting
the total position numbers.
l; The label ofi-th waveform]; = {1,0} represents an earthquake.
N Batch size.
T The model’s classification result afth wave, r; =1 represents an earthquake.
S The number of encoder stacks.
T The number of units to be reshaped in a singléraighannel
for each new position.
w; The i-th waveform.

select negative samples from those misclassifiegs @s aftershocks after passing
through the filter. Inspired by the Adversarial Mae Learning (Goodfellow et al.,
2015), which is based on the Nash Equilibrium ofm@aTheory, we creatively
generate these misclassified waveforms as advarsamples. In this way, our model
is able to capture the critical points of earthqudktection and subsequently extract
vitally inherent features of seismic waveforms. Iispoocess overcomes the weakness
of traditional detection methods such as overfittiand provides us a more robust
model (Szegedy et al., 2014).

1.2 Problem Formulation

Taking 3-D waveforms in a 50 s window as the oaginput, our model aims to
learn and output the possibility of the resulteath window: whether it contains an
earthquake P-wave arrival or not. Fig. 3 shows dhi@gram of our problem
formulation, where U-D orientates vertically, N-8daE-W orientate horizontally,
standing for the north-south channel and the east-whannel respectively. To
formulate the problem, we usR to represent a training dataset which contdins
waveforms, and three components of each wavefornegmond to our three channels.
Formally, the training dataset is expressed as:

D = {Wl,Wz, -, W }, (1)

w; = {channel,, channel,, channels}, (2)
where w; represents a waveform amtannel; means a single signal. Each
corresponds to a labdl, wherel; = {0,1} represents a noise while = {1,0}
represents an earthquake event containing P-wailaiFinally, we can define the



problem as follows: The objective is to learn aapyAclassification modeM from
the training dataseD, which can classify a new waveform window through
output r;, wherer; =1 represents an earthquake event with P-wave rard0
otherwise (??).

1.3 Model Architecture
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Fig. 4 The architecture of our model, TransQuake. (a) Data pregsimece (b) Full
connected and position code layer; (c) The full architecture of our model.

Our model TransQuake is based on the most advasempdential model Transformer
in the NLP field. The original Transformer contaimg parts, namely encoders and
decoders (Vaswani A. et al., 2017). Since the decpdrt is designed for generative
tasks rather than discriminative tasks, we only thh&eencoder part to establish our
model. The full architecture of our model is showmnFig. 4. Different from the
original Transformer, to adapt the continuous waxefdata rather than independent
words as the input, we first propose a new appraeadbbtain the input of encoders
(as shown in Fig. 4a and b). Then, with the adaptembders of the Transformer, we
further exploit a linear layer and a softmax laj@mbtain the classification results,
i.e., whether the input data contain a seismic RPena not. The related mathematical
notations are summarized in Table 1.



1.3.1 Input

Learning from the earthquake real-time monitoringtem of the National
Digital Seismic Network, we extract the 150 timepst STA and the 2,000 time-steps
LTA of the waveforms (Guo Tielong et al., 2019).idsSTA/LTA, the data are able
to generate better waveform features and modelopeance. It indicates that
machine learning methods combining traditional pdaismodels can complement
each other and achieve better performance (Reinhsteet al., 2019)Next, as the
Transformer is proposed for NLP, its original inpsita batch of words, while our
input is 3D continuous-time data. To adapt to thierence, we propose a module to
make corresponding changes in input processingNlL® tasks, each word is
embedded into a vector whose size equals the hidd#s. Then the position code
(PC) is added. As shown in Fig. 4, we reshape theeform and follow a fully
connected (FC) layer to explore the relationshipvben each position of vectors, and
then add the PC to get the input of encoders. Theegsing details are as follows.
Considering the combination of 3 components in gagition and the suitable size of
the attention model, we reshape each waveform f8Bor5000 into k X 3T, where
k = (3x5000)/3T. Then we parallelly feed it to FC and PC layensthie FC layer,
each neuron cell connects all new cells as:

Ym = 2317;1 Waxn 3)
where y,, is the value of a new cell witm € {0,1,...,d} and d denotes the
dimension of hidden unitsi¥,, is the wight that should be trained,, is the value of
the original cell. After the FC layer, the last @insion of data equals the hidden units.
In the PC layer, we embed each position numbeesiiaped data with the Xavier
initializer to a vector whose length also equaldden units (Glorot X. et al., 2010).
As FC and PC are the same shapes, we are ablal tvadmatrices corresponding
elements together and take the new matrix as quit.in

1.3.2 Encoders

Before feeding the new input into the encoders,use a dropout layer. The
dropout layer randomly drops out a certain pergmt@®) of model neurons in
training, which effectively avoids the model froralying on certain neurons and
enhances the generalization ability. After all pmgpions, data are fed into the
encoders of our model. The detailed process ofiteeencoder is shown in Fig. 5.
Using the layer-normalization after each residuahnection layer and working
together with feed-forward layers, it prevents éx&reme situation, balances the data,
and avoid model deterioration. However, compareth V8NN, the Transformer
model fully relies on the attention mechanism, \his the real workhorse of our
model and can model the sequential information.v8gkecifically, the mission of the
self-attention layers is to find out the dependebefween different positions in the
input that can better encode the information oncilmeent position. For example, in
the NLP field, the word “he” in the sentence “Theyldidn’t go to school, because he
felt sick.” may pay the highest attention to therdvtboy”. In this task, the P-wave
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may pay the highest attention to the S wave. Furtbee, the multi-head attention
mechanism operates multiple attention in paraltel anables the model to explore
more relationships than single attention which tyeatrengthens the ability to
receive information on different positions and @ases the training time. Take the
attention mechanism as mapping a query and comespyp key-value pairs to an
output, we have the core formula as:
, QkT
Attention(Q,K,V) = softmax (ﬁ) v, (4)

where Q, K,V are matrices packed respectively by a batch ofiegiekeys, values
(Alammar J., 2018). Note that we explore the irdérelationship among waveforms;
thus, Q = K =V is set before they go through their own lineaelayand begin the

attention calculation.
1.3.3 Output

To turn the vectors into a classification resule use a linear layer, which uses
the Xavier initializer andbias = 0.1. We then then add a softmax layer to get the
possibility of each label. Finally, our model wdltput the result label which has a
higher probability. As we mentioned before= 0 represents a noise wave and
r; = 1 represents an earthquake event with P-wave arrival



2 RESULTSAND DISCUSSION

Table2 Definition of the confusion matrix for model euation.

Output Label Positive (earthquake) atag (noise)
Positive (earthquake) True Positive (TP) FalsetRes(FP)
Negative (noise) False Negative (FN) True Negdafihe)

In our experiments, we split the dataset into 2tigoous parts: the first 5/6
samples are collected in July for training, andlds 1/6 are prepared for validation
(1/12) and test (1/12). Since
the dataset is severely imbalanced (i.e., much megative samples than positive
samples), the data-driven model will prefer thearigj class, which greatly decays
the performance of machine learning models. To rnualathe training data, we
produce additional earthquake waveforms by adderg-mean Gaussian noise (i.e.,
set signal-to-noise ratio randomly between 20-80d8) the original positive
waveform (Perol T. et al., 2018). After that, thember of positive and negative
samples in the training dataset is equal (Zhou Gigt al., 2005).

In the training process, considering the possibilif label error and the
robustness of our model, we use the label smoothiggrithm for our model
(Szegedy C. et al., 2016). Specifically, given aosthing ratee, a uniform
distribution appears over labels, the label ismafdated as

i=(1-al+g, )

where K is the number of label channels. Here, since tlggnal label [; is equal to
{0,1} or {1,0}, K =2, and € = 0.1; thus, the reformulated positive labEl=
{0.95,0.05}, while the negative one is equal £6.05,0.95}. Besides, we utilize the
12-regularized cross-entropy loss functionbf= 1073 to quantify the gap between
label and output (Ng A. Y., 2004). To narrow thepgave optimize the model
parameters using Adam Optimizer witheta1 =09, beta2 =0.98, and
epsilon = 108 (Kingma D. P. et al., 2014). Meanwhile, the drapie is also set
to 0.1.

2.1 Evaluation Metrics
In our experiments, we evaluate our approach vatir fvidely-used evaluation

metrics, namely Accuracy, Precision, Recall, and $dore. In particular, the
definition of each evaluation metric is listed aBdws:

Accuracy = (TP +TN)/(TP + TN + FN + FP), (6)
Precision = TP /(TP + FP), (7)

Recall =TP/(TP + FN), (8)

F1 = 2/(1/Precision + 1/Recall), (9)

where the definitions of TP, TN, FN, and FP arevainaon Table 2. Indeed, the
Accuracy quantifies the percent of true samples;Rhecision focuses on how many
positive samples our model judges are correctRiall focuses on the percentage of



positive samples that can be detected correctlgl; the F1 score aims to strike a
balance between Precision and Recall, which engesras to find the earthquake
examples accurately and completely.

Table3 The setting of model parameters in our experiment

Learning Drop Use Augment
N  Head d T L2 §
rate out STA/LTA strategy
128 8 512 5x107® 50 0.005 4 0.1 yes Gaussian noise

Table4 The overall performance.

Method Accuracy Precision Recall F1
Logistic Regression 0.499 0.073 0.504 0.127
Support Vector Machine 0.697 0.079 0.300 0.126
RNN (LSTM) 0.857 0.163 0.234 0.192
Random Forest 0.879 0.259 0.352 0.298
CNN (CPIC) 0.932 0.521 0.739 0.611
CNN (ConvNetquake) 0.946 0.649 0.581 0.613
MSDNN 0.952 0.678 0.638 0.658
MSDNN+Multi-task Learning 0.954 0.683 0.667 0.675
TransQuake 0.956 0.712 0.667 0.689

Table5 Performance with Different Time Window.

Length (s) Accuracy Precision Recall F1
20 0.953 0.714 0.583 0.642
30 0.956 0.740 0.609 0.669
40 0.953 0.685 0.656 0.670
50 0.956 0.712 0.667 0.689

2.2 Baselines

To better validate the effectiveness of our model have compared it with numerous
state-of-the-art machine learning models that aidely used in the seismic field.
Specifically, we first select some traditional miaeh learning models including
Logistic Regressigrsupport Vector MachingCortes C. et al., 1995andRandom
Forests (Breiman L., 2001) Then, since TransQuake is a deep learning-based
sequential model, we also select some advancedlel@epng methods as baselines.
® Recurrent Neural Network (RNN§ a classic neural network structure for
sequential data modeling (Rodriguez P. et al., 198%ur experiments, we
choose the most advanced RNN-based model Long-t&rort memory
(LSTM) as the baseline.
® CNNstructure is widely applied for seismic detectidne to its remarkable
capability of modeling local and static featuresm@ng existing CNN
models, we choose two advanced models, ConvNetgaa#eCPIC (Zhu
Lijun et al., 2019), as baselines. Specificallyn@detquake is the first CNN
model proposed for earthquake detection. In oureexgnts, we add the



number of 1d-convolution layers from 8 to 11, arttieo parts are set
following the criterion proposed by Perol T. et §2018).
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Fig. 6 The process of generating an average attention-simplified vieAvd€ege
attention-simplified view; (b) 8-head attention-simplified view.

® MSDNN and MSDNN+Multi-task Learning are two advadaiep learning
models for earthquake detection. Particularlyy, M$DMombines the
advantage of both CNN and LSTM, while MSDNN+Muklisk Learning
can take advantage of the homologous earthqualesthtmce MSDNN with
additional clues (Zhang Qi et al., 2019).

2.3 Overall Performance

After using the validation dataset for fitting omnodel, we can obtain the best
settings of model parameters as shown in Table 3.

The overall performance comparisons of differentais on the test dataset are
shown in Table 4. The results suggest the follovaogclusions. First, our approach
TransQuake consistently outperforms all baseliResticularly, in terms of the F1
score, the performance of TransQuake is 259% hitjftaar RNN, 131% higher than
Random Forest, 12.7% higher than CPIC, 12.4% higfmem ConvNetquake, 4.7%
higher than MSDNN, and 2.1% higher than MSDNN+Mtdk learning,
respectively. Notably, as mentioned before, sileertegative samples in our dataset
are noises misclassified as aftershocks by lowstiulel FilterPicker rather than the
simple background noises, the difficulty of ourktas much higher than previous
studies (Lara-Cueva R. et al., 2017; Perol T..e2al18; Rouet-Leduc B. et al., 2019),
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Fig. 7 Average attention-simplified views of different waveforms.

reasonably resulting in slightly lower performarwith weaker baselines compared
with those obtained by the original paper (usingkigepound noises as negatives). In
turn, it validateghe difficulty of our task and the discriminatiohaur model.

2.4 Discussion of the Length of the Time Window

As shown in Table 5, we set 4 different time winddwom 20s to 50s. Generally,
metrics, especially F1, become better with thedasmng of the time window length ,
indicating that the information besides the P walge contributes to detection. Given
the efficiency, we set the time window as 50s i@ plaper instead of increasing the
length. In addition, short time windows of our mbdall perform better than most
state-of-the-art models. Thus, it is possible s& wur model in situations with
different time requirements.

2.5 Case Study: The Visualization of Multi-heacAtibn

As a crucial part of our model, the attention nstbm can help the model pay
more attention to the important information andidvmise interference, providing us
a way to understand the judgment logic behind tleleh Here, we us& = 50,

k = 100 positions, which means each position correspom@s@.5s time window of
the waveform. To appropriately show their attentiondifferent purposes, we make
two views of attention maps: one consists of 1@f@arggles and briefly presents the
focuses (attention-simplified view), the other i2B matrix with size100 x 100
which helps us further explore the inner relatigpsgattention-full view). Using
attention-simplified views, Fig. 6 shows an exampiehe distribution of attention
scores. The darker the color, the higher the atterdgcore (i.e., more important for
model judgment). It can be seen that our model tsp@ously focuses on the P wave
and S wave which are important for earthquake wawe$. Specifically, Fig. 6(b)
shows how our multi-head attention mechanism worke multi-head attention uses
different attention distributions to focus on difat important positions (e.g., Head 1
focuses on S wave and Head 3 focuses on P wavis)kiftd of structure can make
the attention mechanism more precise and comprefeerihen, Fig. 7 shows some
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(c) attention-full view of TN; (d) attention-simplified view of TN.

attention maps of different waveforms, where we @ad that our model always
accurately focuses on the key positions (i.e., Pewand S wave), no matter how the
waveforms change.

Furthermore, in order to analyze the effect of #igention mechanism on
waveforms of different types in detail, we plot tlatention of all TPs (600
aftershocks) and that of all TNs (8967 noises) eeBSpely in Fig. 8. In
attention-simplified views (i.e., Fig. 8(b) and Xd)hey both highly focus on the P
wave and exhibit a slight difference in the attemtdistribution of the S-wave. In
attention-full views (i.e., Fig. 8(a) and (c)), yhaeot only present the high attention
position but also tell the positions are payingemtibn to it (??7?) (i.e., the latent
correlation between different positions of wavefejnin the attention-full view, each
square denotes the attention weighttofto X. As shown in Fig. 8(c), TN (noise) has
more diagonal focuses, which means it usually cesnitg focus for different waves
rather than builds stable relationships with otlp&sitions. Another important
difference is shown in the red boxes in Fig. 8f&] &): earthquakes own their most
stable relationship between the coda wave and R-waelile noises do not (it
meaninglessly focus on the diagonal of their firgition). Besides, the high weights
of S-wave and coda wave paying to P-wave in Fig) &(rther validate that the
existence of the S-wave and coda wave contributesdeéntifying the P-wave,
especially the coda wave.

3 Conclusion and Prospection

In this paper, we propose a novel deep learningoagh, TransQuake, for



enhancing the performance of seismic P-wave detec8pecifically, TransQuake is
designed on the basis of the most advanced deepers&m model, namely
Transformer, integrating both STA/LTA algorithms danmulti-head attention
mechanisms. Compared with other deep learning model relevant studies,
TransQuake can effectively model the globally dyaimformation contained within
seismic waves. In addition, it shows high intergbdity for result investigation. We
have conducted extensive experiments on the aftekshfollowing the Mw7.9
Wenchuan earthquake using a number of state-o&ithieaselines. The experimental
results clearly validate the effectiveness of T€amske in terms of both seismic
P-wave detection and result interpretation, sudhasttention distribution of seismic
waves in different positions, and the analysishefaptimal relationship between coda
wave and P wave for noise identification. Indeé@, architecture of TransQuake can
be easily adapted to multidimensional data fromouar fields. Therefore, the future
works will focus on the integration of differenttdaesources (e.g., geomagnetic and
geothermal data) into our model for seismic detecti
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