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Recent years have witnessed the increasing research interest in developing 
machine learning, especially deep learning which provides approaches for 
enhancing the performance of microearthquake detection. While considerable 
research efforts have been made in this direction, most of the state-of-the-art 
solutions are based on Convolutional Neural Network (CNN) structure, due to its 
remarkable capability of modeling local and static features. Indeed, the globally 
dynamic characteristics contained within time series data (i.e., seismic waves), 
which cannot be fully captured by CNN-based models, have been largely ignored 
in previous studies. In this paper, we propose a novel deep learning approach, 
TransQuake, for seismic P-wave detection. The approach is based on the most 
advanced sequential model, namely Transformer. To be specific, TransQuake can 
exploit the STA/LTA algorithm for adapting the three-component structure of 
seismic waves as input, and take advantage of the multi-head attention 
mechanism for conducting explainable model learning. Extensive evaluations of 
the aftershocks following the 2008 Wenchuan MW7.9 earthquake clearly 
demonstrates that TransQuake is able to achieve the best detection performance 
which excels the results obtained using other baselines. Meanwhile, experimental 
results also validate the interpretability of the results obtained by TransQuake, 
such as the attention distribution of seismic waves in different positions, and the 
analysis of the optimal relationship between coda wave and P-wave for noise 
identification.  
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INTRODUCTION 

With the rapid development of seismic monitoring technology, more and more 
attention has been paid to the efficient detection and differentiation of 
microearthquakes from massive noise data, such as the intensive aftershock sequences 
following a destructive earthquake. Indeed, a variety of methods, such as template 
matching (Frank W. B. et al., 2014; Gibbons S. J. et al., 2007), similarity searching 
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(Yoon C. E. et al., 2015), and higher-order statistics (Saragiotis C. D. et al., 2000), 
have been developed in previous studies for addressing this challenge. Nevertheless, 
the most widely used technologies for seismic phase detection are developed based on 
the STA/LTA algorithm and/or its variants, which identify earthquake events when the 
ratio between the Short-Term Average (STA) and Long-Term Average (LTA) of 
energy function for seismic waves exceeds the pre-defined threshold (Allen R., 1982; 
Guo Tielong et al., 2019; Withers M. et al., 1998). However, the identification 
performance of all these traditional approaches is usually limited, either due to the 
trade-off effect between false and missing alarms or due to the that between the 
computational cost and time sensitivity (Liu Han et al., 2014; Reichstein M. et al., 
2019).  

Recently, an increasing number of researchers have focusedon developing 
machine learning, especially deep learning,  which provides approaches for 
enhancing the performance of microearthquake detection. While considerable 
research efforts have been made in this domain, most of the state-of-the-art solutions 
are based on Convolutional Neural Network (CNN) structure, due to its remarkable 
capability of modeling local and static features (Rouet-Leduc B. et al., 2020; Zhang 
Xiong. et al., 2020). For example, Perol T. et al., (2018) propose an advanced 
CNN-based approach, CovNetquake, for earthquake detection and location. Based on 
CovNetquake, (Zhu Lijun. et al., 2019) propose a new approach CPIC for identifying 
and picking the seismic phase arrivals. However, since CNN is originally designed for 
pixel-based image processing rather than sequential data modeling, the global and 
dynamic characteristics of seismic waves cannot be fully captured by CNN-based 
models, which has been largely ignored in previous studies.  

To address the above challenges, in this paper, we propose a novel deep learning 
approach, TransQuake, for seismic P-wave detection based on the most advanced 
sequential model in natural language processing (NLP), namely Transformer 
(Vaswani A. et al., 2017). To be specific, TransQuake can exploit the STA/LTA 
algorithm for adapting the three-component structure of seismic waves as input, and 

Fig. 1  The geographical location of the study region. 
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take advantage of the multi-head attention mechanism for providing explainable 
model learning. Extensive evaluations of the aftershocks following the 2008 
Wenchuan MW7.9 earthquake clearly demonstrates that TransQuake can achieve the 
best detection performance which excels the results obtained using other baselines. 
Meanwhile, experimental results also validate the interpretability of the results 
obtained by TransQuake, such as the attention distribution of seismic waves in 
different positions, and the analysis of the optimal relationship between coda wave 
and P wave for noise identification.  

1 DATA AND METHOD 

1.1 Data 

The dataset used in this paper is the records of 100 Hz signals from the 
aftershocks following the 2008 Wenchuan MW7.9 earthquake, which were recorded by 
14 permanent earthquake stations (Fang Lihua, 2017) from July 1st to 31st. The 
distribution of stations and the main event are shown in Fig. 1. Each record of these 
stations contains 3 dimensions (3-D): vertical component, north-south component, 
and east-west component. Followed by the settings in (Zhang Qi et al., 2019), we 
filter the waves using the Bessel filter with bandwidth 2-10 Hz, and generate the 
negative samples by the FilterPicker (Lomax A. et al., 2012). Considering the 
different epicentral distances, we are unable to set a fixed time window that only 
contains a full P-wave, thus we set the time-window as 50 s to comprehensively 

Fig. 3  The diagram of our problem formulation. 
 

Fig. 2  Some examples of labeled waveforms in the dataset.  
(a) Positive examples; (b) Negative examples. 
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analyze all the included waveforms. After data preprocessing, we have obtained 109 
719 noise waveforms (negative samples), 9 891 aftershock waveforms (positive 
samples), and the shape of each waveform is structured by 1 × 3 × 5 000. Fig. 2 
shows some examples of two types of waveforms. Note that, instead of directly 
generating the noise waveforms by background noises, here we  
Table 1  Some important mathematical notations. 
Symbol  Description  

�   The dimension of hidden units. 

� The dataset of waveforms. 

	 
The first dimension of a wave after reshaping, representing  

the total position numbers. 


� The label of �-th waveform, 
� = �1,0� represents an earthquake. 

� Batch size. 

�� The model’s classification result of �-th wave, �� =1 represents an earthquake. 

� The number of encoder stacks. 

� The number of units to be reshaped in a single original channel  

for each new position. 

�� The �-th waveform. 

 
select negative samples from those misclassified ones as aftershocks after passing 
through the filter. Inspired by the Adversarial Machine Learning (Goodfellow et al., 
2015), which is based on the Nash Equilibrium of Game Theory, we creatively 
generate these misclassified waveforms as adversarial samples. In this way, our model 
is able to capture the critical points of earthquake detection and subsequently extract 
vitally inherent features of seismic waveforms. Such process overcomes the weakness 
of traditional detection methods such as overfitting, and provides us a more robust 
model (Szegedy et al., 2014). 

1.2 Problem Formulation 

Taking 3-D waveforms in a 50 s window as the original input, our model aims to 
learn and output the possibility of the results of each window: whether it contains an 
earthquake P-wave arrival or not. Fig. 3 shows the diagram of our problem 
formulation, where U-D orientates vertically, N-S and E-W orientate horizontally, 
standing for the north-south channel and the east-west channel respectively. To 
formulate the problem, we use � to represent a training dataset which contains � 
waveforms, and three components of each waveform correspond to our three channels. 
Formally, the training dataset is expressed as: 

 � = ���, ��, … ，�� �, (1) 

 �� = ��ℎ����
�, �ℎ����
�, �ℎ����
 �, (2) 
where �� represents a waveform and �ℎ����
�  means a single signal. Each �� 
corresponds to a label 
� , where 
� = �0,1� represents a noise while 
� =  �1,0� 
represents an earthquake event containing P-wave arrival. Finally, we can define the 
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problem as follows: The objective is to learn a binary-classification model ! from 
the training dataset D, which can classify a new waveform window �� through 
output �� , where �� = 1 represents an earthquake event with P-wave and �� = 0 
otherwise (??).  

1.3 Model Architecture 
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Our model TransQuake is based on the most advanced sequential model Transformer 
in the NLP field. The original Transformer contains two parts, namely encoders and 
decoders (Vaswani A. et al., 2017). Since the decoder part is designed for generative 
tasks rather than discriminative tasks, we only use the encoder part to establish our 
model. The full architecture of our model is shown in Fig. 4. Different from the 
original Transformer, to adapt the continuous waveform data rather than independent 
words as the input, we first propose a new approach to obtain the input of encoders 
(as shown in Fig. 4a and b). Then, with the adapted encoders of the Transformer, we 
further exploit a linear layer and a softmax layer to obtain the classification results, 
i.e., whether the input data contain a seismic P-wave or not. The related mathematical 
notations are summarized in Table 1. 

Fig. 4  The architecture of our model, TransQuake. (a) Data preprocessing; (b) Fully 
connected and position code layer; (c) The full architecture of our model. 
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1.3.1 Input 

Learning from the earthquake real-time monitoring system of the National 
Digital Seismic Network, we extract the 150 time-steps STA and the 2,000 time-steps 
LTA of the waveforms (Guo Tielong et al., 2019). Using STA/LTA, the data are able 
to generate better waveform features and model performance. It indicates that 
machine learning methods combining traditional physical models can complement 
each other and achieve better performance (Reichstein M. et al., 2019). Next, as the 
Transformer is proposed for NLP, its original input is a batch of words, while our 
input is 3D continuous-time data. To adapt to this difference, we propose a module to 
make corresponding changes in input processing. In NLP tasks, each word is 
embedded into a vector whose size equals the hidden units. Then the position code 
(PC) is added. As shown in Fig. 4, we reshape the waveform and follow a fully 
connected (FC) layer to explore the relationship between each position of vectors, and 
then add the PC to get the input of encoders. The processing details are as follows. 
Considering the combination of 3 components in each position and the suitable size of 
the attention model, we reshape each waveform from 3 × 5000 into 	 × 3�, where 
	 =  (3 × 5000)/3�. Then we parallelly feed it to FC and PC layers. In the FC layer, 
each neuron cell connects all new cells as: 

 &' = ∑ )*+*
 ,
*-�  , (3) 

where &'  is the value of a new cell with . ∈ �0,1, … , �� and �  denotes the 
dimension of hidden units; )* is the wight that should be trained; +* is the value of 
the original cell. After the FC layer, the last dimension of data equals the hidden units. 
In the PC layer, we embed each position number of reshaped data with the Xavier 
initializer to a vector whose length also equals hidden units (Glorot X. et al., 2010). 
As FC and PC are the same shapes, we are able to add two matrices corresponding 
elements together and take the new matrix as our input. 

1.3.2 Encoders 

Before feeding the new input into the encoders, we use a dropout layer. The 
dropout layer randomly drops out a certain percentage (0) of model neurons in 
training, which effectively avoids the model from relying on certain neurons and 
enhances the generalization ability. After all preparations, data are fed into the 
encoders of our model. The detailed process of the first encoder is shown in Fig. 5. 
Using the layer-normalization after each residual connection layer and working 
together with feed-forward layers, it prevents the extreme situation, balances the data, 
and avoid model deterioration. However, compared with CNN, the Transformer 
model fully relies on the attention mechanism, which is the real workhorse of our 
model and can model the sequential information well. Specifically, the mission of the 
self-attention layers is to find out the dependency between different positions in the 
input that can better encode the information on the current position. For example, in 
the NLP field, the word “he” in the sentence “The boy didn’t go to school, because he 
felt sick.” may pay the highest attention to the word “boy”. In this task, the P-wave 
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may pay the highest attention to the S wave. Furthermore, the multi-head attention 
mechanism operates multiple attention in parallel and enables the model to explore 
more relationships than single attention which greatly strengthens the ability to 
receive information on different positions and decreases the training time. Take the 
attention mechanism as mapping a query and corresponding key-value pairs to an 
output, we have the core formula as: 

 122��2�3�(4, 5, 6) =  7382.�+ 9 :;<

√>  ? 6 ， (4) 

where 4, 5, 6 are matrices packed respectively by a batch of queries, keys, values 
(Alammar J., 2018). Note that we explore the internal relationship among waveforms; 
thus,  4 = 5 = 6 is set before they go through their own linear layers and begin the 
attention calculation.  

1.3.3 Output 

To turn the vectors into a classification result, we use a linear layer, which uses 
the Xavier initializer and @��7 = 0.1. We then then add a softmax layer to get the 
possibility of each label. Finally, our model will output the result label which has a 
higher probability. As we mentioned before, �� = 0 represents a noise wave and 
�� = 1 represents an earthquake event with P-wave arrival. 

Fig. 5  The architecture of the encoder in TransQuake. 
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2 RESULTS AND DISCUSSION 

Table 2  Definition of the confusion matrix for model evaluation. 
Output              Label Positive (earthquake) Negative (noise) 

Positive (earthquake) True Positive (TP) False Positive (FP) 

Negative (noise) False Negative (FN) True Negative (TN) 

 
In our experiments, we split the dataset into 2 contiguous parts: the first 5/6 

samples are collected in July for training, and the last 1/6 are prepared for validation 
(1/12) and test (1/12). Since  
the dataset is severely imbalanced (i.e., much more negative samples than positive 
samples), the data-driven model will prefer the majority class, which greatly decays 
the performance of machine learning models. To balance the training data, we 
produce additional earthquake waveforms by adding zero-mean Gaussian noise (i.e., 
set signal-to-noise ratio randomly between 20-80dB) to the original positive 
waveform (Perol T. et al., 2018). After that, the number of positive and negative 
samples in the training dataset is equal (Zhou Zhihua et al., 2005).  

In the training process, considering the possibility of label error and the 
robustness of our model, we use the label smoothing algorithm for our model 
(Szegedy C. et al., 2016). Specifically, given a smoothing rate B, a uniform 
distribution appears over labels, the label is reformulated as 

  
�
C = (1 − B) 
� + �

; , (5)  
where 5 is the number of label channels. Here, since the original label 
� is equal to 
�0,1� or �1,0�, 5 = 2, and B = 0.1; thus, the reformulated positive label 
�

C =
�0.95,0.05�, while the negative one is equal to �0.05,0.95�. Besides, we utilize the 

2-regularized cross-entropy loss function of H = 10I  to quantify the gap between 
label and output (Ng A. Y., 2004). To narrow the gap, we optimize the model 
parameters using Adam Optimizer with @�2� 1 = 0.9 ,  @�2� 2 = 0.98 , and 
�K7�
3� = 10IL (Kingma D. P. et al., 2014). Meanwhile, the dropout rate is also set 
to 0.1. 

2.1 Evaluation Metrics 

In our experiments, we evaluate our approach with four widely-used evaluation 
metrics, namely Accuracy, Precision, Recall, and F1 Score. In particular, the 
definition of each evaluation metric is listed as follows: 
 1��M���& = (�0 + ��)/(�0 + �� + N� + N0), (6) 
 0����7�3� = �0/(�0 + N0), (7) 
 O���

 = �0/(�0 + N�), (8) 
 N1 = 2/(1/0����7�3� + 1/O���

), (9) 

where the definitions of TP, TN, FN, and FP are shown in Table 2. Indeed, the 
Accuracy quantifies the percent of true samples; the Precision focuses on how many 
positive samples our model judges are correct; the Recall focuses on the percentage of 
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positive samples that can be detected correctly; and the F1 score aims to strike a 
balance between Precision and Recall, which encourages us to find the earthquake 
examples accurately and completely. 
Table 3  The setting of model parameters in our experiments. 

� Head � 
Learning 

rate 
� L2 � 

Drop 

out 

Use 

STA/LTA 

Augment 

strategy 

128 8 512 5× 10IL 50 0.005 4 0.1 yes Gaussian noise 

 
Table 4  The overall performance. 

Method Accuracy Precision Recall F1 

Logistic Regression 0.499 0.073 0.504 0.127 

Support Vector Machine 0.697 0.079 0.300 0.126 

RNN (LSTM) 0.857 0.163 0.234 0.192 

Random Forest 0.879 0.259 0.352 0.298 

CNN (CPIC) 0.932 0.521 0.739 0.611 

CNN (ConvNetquake) 0.946 0.649 0.581 0.613 

MSDNN 0.952 0.678 0.638 0.658 

MSDNN+Multi-task Learning 0.954 0.683 0.667 0.675 

TransQuake 0.956 0.712 0.667 0.689 

 
Table 5  Performance with Different Time Window. 

Length (s) Accuracy Precision Recall F1 

20 0.953 0.714 0.583 0.642 

30 0.956 0.740 0.609 0.669 

40 0.953 0.685 0.656 0.670 

50 0.956 0.712 0.667 0.689 

2.2 Baselines 

To better validate the effectiveness of our model, we have compared it with numerous 
state-of-the-art machine learning models that are widely used in the seismic field. 
Specifically, we first select some traditional machine learning models including 
Logistic Regression, Support Vector Machine (Cortes C. et al., 1995), and Random  
Forests (Breiman L., 2001). Then, since TransQuake is a deep learning-based 
sequential model, we also select some advanced deep learning methods as baselines.  

� Recurrent Neural Network (RNN) is a classic neural network structure for 
sequential data modeling (Rodriguez P. et al., 1999). In our experiments, we 
choose the most advanced RNN-based model Long short-term memory 
(LSTM) as the baseline. 

� CNN structure is widely applied for seismic detection, due to its remarkable 
capability of modeling local and static features. Among existing CNN 
models, we choose two advanced models, ConvNetquake and CPIC (Zhu 
Lijun et al., 2019), as baselines. Specifically, ConvNetquake is the first CNN 
model proposed for earthquake detection. In our experiments, we add the 
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number of 1d-convolution layers from 8 to 11, and other parts are set 
following the criterion proposed by Perol T. et al., (2018).  

� MSDNN and MSDNN+Multi-task Learning are two advanced deep learning 
models for earthquake detection. Particularly, MSDNN combines the 
advantage of both CNN and LSTM, while MSDNN+Multi-task Learning 
can take advantage of the homologous earthquakes to enhance MSDNN with 
additional clues (Zhang Qi et al., 2019). 

2.3 Overall Performance 

After using the validation dataset for fitting our model, we can obtain the best 
settings of model parameters as shown in Table 3.  

The overall performance comparisons of different models on the test dataset are 
shown in Table 4. The results suggest the following conclusions.  First, our approach 
TransQuake consistently outperforms all baselines. Particularly, in terms of the F1 
score, the performance of TransQuake is 259% higher than RNN, 131% higher than 
Random Forest, 12.7% higher than CPIC, 12.4% higher than ConvNetquake, 4.7% 
higher than MSDNN, and 2.1% higher than MSDNN+Multi-task learning, 
respectively. Notably, as mentioned before, since the negative samples in our dataset 
are noises misclassified as aftershocks by low threshold FilterPicker rather than the 
simple background noises, the difficulty of our task is much higher than previous 
studies (Lara-Cueva R. et al., 2017; Perol T. et al., 2018; Rouet-Leduc B. et al., 2019), 

Fig. 6  The process of generating an average attention-simplified view. (a) Average 
attention-simplified view; (b) 8-head attention-simplified view. 
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reasonably resulting in slightly lower performance with weaker baselines compared 
with those obtained by the original paper (using background noises as negatives). In 
turn, it validates the difficulty of our task and the discrimination of our model. 

2.4 Discussion of the Length of the Time Window 

As shown in Table 5, we set 4 different time windows from 20s to 50s. Generally, 
metrics, especially F1, become better with the increasing of the time window length , 
indicating that the information besides the P wave also contributes to detection. Given 
the efficiency, we set the time window as 50s in the paper instead of increasing the 
length. In addition, short time windows of our model still perform better than most 
state-of-the-art models. Thus, it  is possible to use our model in situations with 
different time requirements.  

2.5 Case Study: The Visualization of Multi-head Attention 

 As a crucial part of our model, the attention mechanism can help the model pay 
more attention to the important information and avoid noise interference, providing us 
a way to understand the judgment logic behind the model. Here, we use � = 50, 
	 = 100 positions, which means each position corresponds to a 0.5s time window of 
the waveform. To appropriately show their attention for different purposes, we make 
two views of attention maps: one consists of 100 rectangles and briefly presents the 
focuses (attention-simplified view), the other is a 2D matrix with size 100 × 100 
which helps us further explore the inner relationship (attention-full view). Using 
attention-simplified views, Fig. 6 shows an example of the distribution of attention 
scores. The darker the color, the higher the attention score (i.e., more important for 
model judgment). It can be seen that our model spontaneously focuses on the P wave 
and S wave which are important for earthquake waveforms. Specifically, Fig. 6(b) 
shows how our multi-head attention mechanism works. The multi-head attention uses 
different attention distributions to focus on different important positions (e.g., Head 1 
focuses on S wave and Head 3 focuses on P wave). This kind of structure can make 
the attention mechanism more precise and comprehensive. Then, Fig. 7 shows some 

Fig. 7  Average attention-simplified views of different waveforms. 
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attention maps of different waveforms, where we can find that our model always 
accurately focuses on the key positions (i.e., P wave and S wave), no matter how the 
waveforms change.   

Furthermore, in order to analyze the effect of the attention mechanism on 
waveforms of different types in detail, we plot the attention of all TPs (600 
aftershocks) and that of all TNs (8967 noises) respectively in Fig. 8. In 
attention-simplified views (i.e., Fig. 8(b) and (d)), they both highly focus on the P 
wave and exhibit a slight difference in the attention distribution of the S-wave. In 
attention-full views (i.e., Fig. 8(a) and (c)), they not only present the high attention 
position but also tell the positions are paying attention to it (???) (i.e., the latent 
correlation between different positions of waveforms). In the attention-full view, each 
square denotes the attention weight of P to Q. As shown in Fig. 8(c), TN (noise) has 
more diagonal focuses, which means it usually changes its focus for different waves 
rather than builds stable relationships with other positions. Another important 
difference is shown in the red boxes in Fig. 8(a) and (c): earthquakes own their most 
stable relationship between the coda wave and P-wave while noises do not (it 
meaninglessly focus on the diagonal of their first motion). Besides, the high weights 
of S-wave and coda wave paying to P-wave in Fig. 8(a) further validate that the 
existence of the S-wave and coda wave contributes to identifying the P-wave, 
especially the coda wave.   

3 Conclusion and Prospection 

In this paper, we propose a novel deep learning approach, TransQuake, for 

Fig. 8  Two views of average attention map of all TP examples and all TN examples. 
(a) attention-full view of TP; (b) attention-simplified view of TP; 
(c) attention-full view of TN; (d) attention-simplified view of TN. 
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enhancing the performance of seismic P-wave detection. Specifically, TransQuake is 
designed on the basis of the most advanced deep sequential model, namely 
Transformer, integrating both STA/LTA algorithms and multi-head attention 
mechanisms. Compared with other deep learning models in relevant studies, 
TransQuake can effectively model the globally dynamic information contained within 
seismic waves. In addition, it shows high interpretability for result investigation. We 
have conducted extensive experiments on the aftershocks following the Mw7.9 
Wenchuan earthquake using a number of state-of-the-art baselines. The experimental 
results clearly validate the effectiveness of TransQuake in terms of both seismic 
P-wave detection and result interpretation, such as the attention distribution of seismic 
waves in different positions, and the analysis of the optimal relationship between coda 
wave and P wave for noise identification. Indeed, the architecture of TransQuake can 
be easily adapted to multidimensional data from various fields. Therefore, the future 
works will focus on the integration of different data resources (e.g., geomagnetic and 
geothermal data) into our model for seismic detection.  
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